Press "Enter" to skip to content

CubeSat Project

The CubeSat project currently consists of 30 students of different fields of study and universities in the vicinity of Darmstadt. The project is divided into different subsystems, the so-called subsections. Each of the subsections is led by a team leader who coordinates the work and is also the contact person for technical related questions.

The aim of the project is the development of a 1U CubeSat, the training of the members regarding space technologies and networking with industry. The following list contains all subsystems:

What is a CubeSat?

CubeSats are a concept for nanosatellites initiated by Stanford University and California Polytechnic State University. It defines a uniform framework for the construction and launch of satellites. The smallest satellite described in the CubeSat standard is the so-called 1U (1 Unit) CubeSat, which has external dimensions of 10 cm x 10 cm x 11.35 cm and a maximum weight of 1.33 kg. Further CubeSats are then multiples of this size (e.g. 1.5U, 2U, 3U, …). The CubeSat project of TUDSaT focuses on the development of a 1U CubeSat.

Mission Objectives

Many CubeSat operators rely on so-called Two Line Elements (TLEs) to determine the satellite’s orbit after ejection. However, especially in large constellations and after the launch of rideshare missions with many small satellites, there may be a considerable delay because the TLE parameters are not published until the satellite can be clearly identified. Historical data show that this can take up to 200 days. Together with the Space Safety Office of ESOC in Darmstadt, a mission is being developed to address this problem, among others. A detailed description of the mission objectives and the payload can be found on the Mission main page.

How We Work

Unlike other space projects, the CubeSat team does not follow the classical approach of project phases as described by ECSS, but an iterative development approach. This decision is based on two advantages:        

  1. rapid prototyping” allows to optimize the design at an early stage
  2. the iterative approach allows a flexible handling of changing requirements

The iterative approach is essentially based on the phase model, which means that all phases of the traditional model are run through per iteration. Each iteration lasts 6 months (semester cycle), starts with the conception and definition of milestones and goes seamlessly into the implementation of a prototype. Towards the end of the cycle the iteration is completed with the integration of the subsystems and their documentation. After each iteration the results are evaluated and based on these results the milestones for the next iteration are defined. Thus, the functional scope is increased with each cycle until the complete product is finally achieved.

This iterative cycle is then concluded by a final test campaign to ensure the functionality of the finished CubeSat.

Open Source Philosophy

After a detailed examination of comparable projects and the products available on the market, it became obvious that no standard for components and protocols used in CubeSats had been established so far. For each project the complete design is started from scratch and little benefit is generated from work already done. Existing Open Source projects are often insufficiently documented, which means that the benefit for the community is missing.

Our CubeSat project provides a generic solution to these problems: an open platform that can handle all common requirements and whose development is well documented and made available to the public in a comprehensible way. Unlike other projects, we do not reinvent the wheel, but rely on proven CCSDS and ECSS space standards to ensure compatibility with professional equipment. Thus, this platform can be used as a basis for every 1U CubeSat project and can be extended as needed.


Then just drop by one of our meetings without obligation. Our bi-weekly project meeting takes place every other week on Tuesday from 18 to 19:30 in changing rooms (for room bookings see calendar). If you have any questions, please feel free to contact the head of the CubeSat project, Fabian Burger.